우주론 이야기 좀 하자

빅뱅 어쩌구부터 시작하진 않겠다. 완결된 상태의 과학적 설명을 듣기보다는 어떻게 그 이론들이 생겨나게 되었는지를 아는 것이 훨씬 유익할 때가 있기 때문이다. 일단 우주론에 대해서 뒤비져 주겠다. 무식하기 짝이 없는 S 모님을 위한 글이므로 아주 쉽고 천박한 수준에서, 하지만 비교적 정확한 설명을 제기하도록 하겠다.


1. 과학적 우주론 이전

뭣도 모르고 상상에 공상에 사변을 거듭하던 시기가 있었다. 이때 이야기는 그냥 넘어가도록 한다. 이 때 우주론 중에서 가장 그럴 듯한 것은 지구 아래에는 그 지구를 떠받들고 있는 거북이 있고, 그 아래에는 또 그 거북을 떠받들고 있는 거북이 있고, 그 아래에는…… 이런 식으로 진행되는 “무한 거북론”이다. 근사하지 않은가. 상상력을 발휘하려면 이래야 한다.


2. 과학적 우주론의 시작 : 아인슈타인과 허블

과학적 우주론의 역사는 아인슈타인의 일반 상대성 이론에서부터 시작된다. 일반 상대성은 질량과 중력, 공간 사이의 관계를 다루는 이론이다. 아인슈타인의 방정식을 연구한 몇몇 사람이 이 방정식이 우주와 밀접한 관계를 갖고 있다는 걸 알아차렸는데 대표적인 게 러시아 수리물리학자 프리드만이다. 그가 도출해낸 방정식을 아인슈타인-프리드만 방정식이라고 부르는데 이 방정식에 따르면 우주는 안정된 상태로 있을 수 없고 팽창하든지 수축하든지 어느 한 쪽으로 움직이게 되어 있다.

여기에 그 유명한 허블이 등장하는 거다. 허블은 대체로 하늘의 거의 모든 은하들이 지구로부터 멀어지고 있다는 사실을 알아 차렸다. 어떻게 알아차렸는지는 다 알 거다. 도플러 효과라는 건데 소리건 빛이건 움직이는 물체에서 나오는 파장이 길어지거나 짧아지는 현상을 말한다. 빛의 경우, 멀어지는 물체에서 오는 빛은 파장이 늘어져 적색 편이를 보이고, 가까이 다가오는 물체는 청색 편이를 보인다. 허블은 대부분의 은하에서 오는 빛이 적색 편이를 나타낸다는 사실을 발견했다.

한 마디로 하면 “우주는 지구를 싫어해.” 왜 그럴까? 이유를 따지는 건 천문학자가 할 일이 아니다. 관측해서 정리하면 그 뿐. 그래서 허블은 변광성을 가지고 먼 은하와의 거리를 계산했다. 변광성이란 별빛의 세기가 주기적으로 달라지는 별인데 같은 종류의 변광성은 같은 패턴으로 변한다. 그러므로 먼 변광성의 별빛 스펙트럼이 어떻게 나타나는지를 알면 가까운 변광성과 비교해 얼마나 멀리 떨어져 있는지를 알 수 있게 된다.

자, 정리해보자 (1) 변광성을 이용해 먼 은하와의 거리를 측정한다. (2) 그 은하의 별빛이 보이는 적색 편이의 정도를 측정한다. (3) 이렇게 하면, 은하와의 거리와 은하가 멀어지는 속도를 측정할 수 있다. (4) 많은 은하들에 대해 이 측정을 반복한다.

그 결과는, “먼 은하일수록 더 빨리 멀어진다.”는 거였다.


3. 우주의 팽창이란?

왜 먼 은하일수록 더 빨리 멀어질까? 여기서 중요한 걸 기억하자. 별이나 은하가 멀어지는 게 아니다.

“우주(공간) 자체가 팽창한다.”

쉽게 생각해 고무판이 있고, 그 고무판 위에 여기저기 점을 찍는다고 생각해 보자. 그 네 귀퉁이에서 사람들이 잡아 당기면 어떻게 될까? 처음에 10cm 거리에 있는 점이 20cm 거리가 되도록 잡아당기면, 50cm 거리의 점은 100cm 거리로 멀어질 거다. 가까운 점이 10cm 움직이는 사이에 먼 점은 50cm를 움직이는 것으로 보인다. 그게 우주의 팽창.

다시 말해서 지구와 태양 사이, 지구와 목성 사이, 하다못해 심지어 우리 몸의 원자 사이의 공간도 원래는 팽창하려는 성질을 갖고 있다. 다만 우리 주변에서는 물질의 밀도가 높아 그 공간의 팽창에 의해서 흩어지지 않고 있을 뿐이다.

그래서 우주에서는 “은하들”은 잘 뭉쳐있고 그 사이의 공간이 팽창하는 것으로 나타난다.


4. 빅뱅 가설

자, 우리가 아는 사실 하나는 “우주가 팽창한다.”는 것 하나 뿐이다. 여기에 대해서 “과거에는 어땠을까?”하고 생각할 수 있겠지. 우주가 팽창하는 속도를 역으로 계산하면 대략 아주 오래 전에는 우주가 아주 좁은 공간에 뭉쳐 있었을 거라는 생각을 할 수 있을 거다.

우주의 팽창 속도(의 비율을 허블 상수라고 한다)를 측정하는 게 그리 간단하지 않아서 처음에는 250억 년이네 100억 년이네 여러 난리를 피웠지만 측정 기술이 발달하면서 현재는 137억 년으로 쇼부가 났다. 다시 말해, 137억 년쯤 전에는 우주가 아주아주아주 작은 (대략 몇 센티미터 이하의) 크기로 뭉쳐 있었을 거라는 거다.

이게 빅뱅 가설이다.

우주에 시작이 있다는 사실, 계속 팽창하고 있다는 사실, 이 두 가지를 받아들이기 싫었던 사람들이 별 지랄을 다했지만, 이 두 가지 사실은 현대 우주론의 기초 중의 기초가 되었다. 이걸 받아들이기 싫으면 우주를 떠나면 된다.


5. 빅뱅 당시에 무슨 일이?

그러면 빅뱅 당시에 무슨 일이 벌어졌을까?

우주가 거의 한 점에 모였을 시기, 즉 빅뱅 자체의 순간에 대해서 우리가 알 수 있는 건 없다. 왜냐면 물리학 공식에서 0이나 무한대가 나오면 방정식 자체가 해결이 안되기 때문이다. 이걸 특이점이라고 부르는데, 달리 말하면 “답이 안 나온다”는 뜻이다.

그리고 빅뱅 직후의 상태를 추측해 보아도, 우리가 아는 물질의 총량이 그 정도로 작은 공간에 모였을 때의 고에너지(고온) 상태에 대해 우리가 적용할 물리 법칙이 없다. 아주아주아주 약간의 시간이 지난 뒤의 우주에 대해서는, 현재의 고에너지 물리학, 소립자 물리학, 양자 역학 등의 지식으로 상당한 정확도의 추측이 가능하다.

아주 고온의 상태에서는 우리가 아는 물질의 상태가 유지될 수가 없다. 원자핵과 전자, 중성자와 양성자가 서로 결합할 수도 없고, 심지어는 아주아주아주 높은 고온에서는 이 원자핵과 전자, 중성자, 기타 소립자 사이의 차이도 사라져 버린다. 여기서 조금 어렵지만 단계적으로 생각해 보자.

(1) 물질과 반물질이 무지무지하게 생겨나고 서로 소멸하고 약간의 물질들이 남는다.
(2) 아직 원자가 생기기 전, 중성자와 양성자와 전자가 서로 자유롭게 돌아다니며 충돌하고, 빛은 이들 사이를 뚫지 못한다 - 뜨거운 수프(플라즈마) 상태
(3) 열기가 좀 식으니 중성자와 양성자가 원자핵을 만들고 전자를 붙잡고 빛이 자유롭게 돌아다닐 수 있게 된다.
(4) 공간이 더 팽창하고 물질이 더 흩어지면서 일부 지역에서 물질들이 뭉치기 시작한다.
(5) 몇 십 억 년 쯤 지나면 이 가스 덩어리들이 뭉쳐 최초의 별이 만들어지기 시작한다.


6. 새로운 등장인물들 : 암흑 물질, 암흑 에너지, 그리고 인플레이션

이 정도만 되면 우주론은 좀 간단했을 거다. 그런데 그렇지 않다. 새로운 후보들이 관측과 이론에 의해서 등장했기 때문이다.

(1) 먼저 암흑 물질

우리가 알고 있는 형태의 물질로서는 은하의 움직임을 설명할 수가 없다는 관측 결과가 나왔다. 은하가 회전하는 속도를 유지하려면 더 많은 물질(질량)이 필요하기 때문이었다. 많은 은하들을 조사해보니 역시 그랬다.

게다가 관측가능한 물질의 양으로는 설명할 수 없는 현상이 또 하나 있다. 중력 렌즈 효과라는 건데, 빛이 중력에 의해서 휘는 현상을 말한다. 은하 옆을 스치는 더 먼 은하의 빛은, 우리가 예측한 것보다 조금 더 휘어 들어온다.

아, 우리가 관측할 수는 없지만 물질이 더 있나 보네. 이게 합리적이겠지? 그게 암흑 물질이다.

우리가 아는 물질은 우주 전체 에너지 총량의 4% 정도 정도이고, 암흑 물질이 약 20%를 넘는다. 나머지는 암흑 에너지다.

(2) 암흑 에너지는 뭐냐?

암흑 에너지는 약 50억 년 전부터 우주의 팽창이 더 “빨라” 진 것을 설명하기 위한 새로운 가설이다. 점점 더 강력한 망원경으로 더 먼 우주를 보다보니 과거 어느 시점부터 우주의 팽창이 더 가속화되었다는 걸 알게 되었는데, 그걸 설명할 길이 없었다. 그래서 암흑 에너지 가설이 등장했다. 이거 등장한지 이제 몇 십년 안된다(1980년대부터 나온 이야기야).

표준적인 설명 방식은, 이게 공간 자체의 에너지라는 거다. 50억 년 전만 해도 우주가 지금보다는 작았으니까 물질의 밀도가 암흑 에너지의 밀도를 능가했기 때문에 얘가 잠잠했는데, 물질의 밀도가 더 희박해지자 암흑 에너지가 이제 힘을 발휘하게 되었다는 거지. 그래서 약 50억 년 전 물질의 밀도와 암흑 에너지 밀도가 역전되는 현상이 벌어졌고 그 뒤로는 계속 우주가 더 빠르게 팽창을 하기 시작했다는 거고, 지금도 팽창 속도는 계속 늘어나고 있다.

(3) 인플레이션

이건 초기 우주에 대한 물리학적 추론을 하다보니 현 상태의 관측을 설명할 수 없어서 도입한 가설이다. 우주 생성 직후에 (우리가 알고 있는 “정상적인” 폭발로 인한 팽창 속도보다 더 빠른) 급속도의 팽창이 잠시 (아주아주아주아주 잠시) 있었다고 보자는 가설인데, 그렇게 보면 현재 관측되는 우주를 설명할 수 있다는 거다.

사실 말도 안되는 거지. 인플레이션(급팽창)이 왜 일어났냐고 물으면 거기에 대한 대답은 없거든. 하지만 그렇게 가정하면 대충 우주의 초기 상태와 역사, 현 상태를 설명할 수 있다는 거다.

다시 정리할까?

A. 빅뱅 (왜 일어났는지 아무도 모름. 있었을 거라고 추정.)
B. 인플레이션 (급팽창. 왜 일어났는지 모름. 이게 있었다고 가정하면 많은 문제가 풀림.)
C. 빛과 물질의 지배 (빅뱅 직후, 인플레이션이 끝난 뒤부터 약 50억 년 전까지)
: 우주가 팽창하고, 은하가 생기고, 별이 생기고, 우리가 알고 있는 우주가 형성됨.
D. 암흑 에너지의 시기 (약 50억 년 전부터)
: 물질 밀도에 눌려 있던 암흑 에너지가 물질 밀도를 역전시키고 우주를 지배.
E. 현재부터 앞으로의 미래?
: 표준 우주론인 빅뱅-인플레이션 이론에 따르면, 점점 더 빠르게 팽창함. 영원히 계속 팽창함.


7. 뭐, 미래가 어떻다고?

일단 암울한 미래부터 생각해 보자. 현재 표준 우주론에 따르면 우주는 계속 팽창한다. 이렇게 계속 팽창하면 점점 먼 우주부터 그 빛이 지구에 도착하지 않는 일들이 벌어진다. 빛의 속도로 달려도 지구에 도착하는 게 불가능할 정도로 멀어지는 거지. 밤하늘에 별이 사라지기 시작하는 거다.

이쯤 되면 은하 안에 있는 별들이 다 타 버려 은하 안의 별도 더 이상 새로 만들어지지 않는다. 안정된 구조의 어두운 별들이나 블랙홀 정도만 남을 뿐, 더 이상 새로운 생명이 만들어질 수 있는 태양 같은 행성이 형성되지 않는 거지. 은하 자체가 어두워지기 시작한다. 뭐 블랙홀도 증발한다는 호킹 블랙홀 복사 이론도 있는데, 그런 건 넘어 가면, 중요한 건,

우주는 거의 거대한 진공으로 변한다는 것.

몇 조 년 즘 지나면 조낸 오랫동안 빛의 속도로 달려야 수소 원자 하나 볼 정도로 희박해진달까.

그게 우리 우주의 미래에요.


8. 우주론에 대한 불만

이런 미래가 싫다면 우주론의 기초부터 생각하면 된다.

(0) 출발 : 우주는 현재 팽창하고 있다 (허블의 관측)
(1) 빅뱅 : 대폭발(에 가까운 팽창)이 일어났을 거다 -> 근거. 허블의 관측과 아인슈타인 이론.
(2) 인플레이션 : 우주 초기에 엄청 빠른 속도의 팽창(인플레이션)이 있었다고 볼 필요가 있음.
(3) 암흑에너지 50억 년 전부터 더 빠르게 팽창했다(암흑에너지?)
(4) 암흑물질 : 현재 우주에는 우리 눈에 보이지 않는 물질들이 있음(암흑 물질)

자, 이 요소들을 섞어서 전혀 다른 대안적인 우주론을 내세우는 게 불가능할까? 아니다. 실제로 그런 우주론을 내세우고 있는 사람들이 있다. 일반인들은 별 관심을 안 갖지만 (우주학자들도 아직은 유보적이지만) 우주론은 나름 경쟁의 시대라는 거다. 표준 우주론, 이거 너덜너덜한 짜깁기에 지나지 않는다.

다음번에는 새로운 우주론이 무엇이고 왜 나왔는지를 설명해 주겠다.

사진 하나 보면 이해가 쉬울 거다. 저작권 귀찮아서 링크만 건다.
http://csaweb.yonsei.ac.kr/~rhee/galimage/CosmicTimeline.jpg

Posted by 알 수 없는 사용자
,